Salient White Elephant

August 7, 2009

Summary of the Best Ideas on the Salient White Elephant

Since there are currently 127 posts on the Salient White Elephant, I thought it might be a good idea to devote this post to summarizing the best of these ideas.

Big Wind or Small Wind?

A worldwide network of inexpensive desktop computers ultimately proved to be far more powerful than the super computer. This lesson should not be lost on wind enthusiasts. However, the Salient White Elephant has proposed intriguing ideas both for very large wind turbines as well as for small wind turbines that may be deployed in large numbers. So why not experiment with both, and let the market sort the winners from the losers?

Idea #1) Circular Wind Dam

Circular Wind Dam

Advantage Over Flow Concentrators and Diffusers

Flow Concentrator and Diffuser

Increasing the outer diameter of a shroud in order to squeeze more wind through a turbine rotor causes the wind to develop greater tendency to veer around the entire structure – shroud, rotor, and all. For this reason, the laws of fluid mechanics tell us that you can squash only a limited amount of “extra wind” through the small opening that contains the rotor. But the wind dam is not subject to this limitation. Why not? Because the purpose of its flow manipulating structure is not to “contain the wind”, but rather to force it to do what it already wants to do – to veer around the entire flow manipulating structure! This effect can be increased indefinitely by building larger and larger dams. In this case, having nowhere else to go, the wind is obliged to flow around the entire structure, regardless of how big it is!

Another obvious advantage of the wind dam is that it is stationary and attached to the earth. A concentrator or diffuser must be suspended high in the air, and must be yawed with the machine. The shroud is large, poorly supported, and vulnerable to mechanical failure.

Here’s a link to the original Circular Wind Dam post. (I wonder if an offshore version of this idea would be possible in shallow water. In this case, the underwater part produces hydro power and the above water part produces wind power. One nice thing about combining the hydro and wind is that it would probably increase the net capacity factor. Also, it seems like it might be possible to design the underwater part to harvest both tidal and wave power.)

Idea #2) High Capacity Factor Wind Turbine

A very large wind turbine with a flow accelerating component (like the Circular Wind Dam just described) is designed to have a very low cut-in wind speed. The turbine is also designed to be very inexpensive through the removal of weight, leaving it perhaps even flimsy. Structural integrity is achieved by providing the machine with ample means for shedding the energy of higher speed winds, and for allowing storm winds to pass through the structure virtually unimpeded. (Perhaps a wall has slats or portholes that can open and close.)

Now because of the flow amplifying nature of the machine, it should be able to produce a significant amount of power at low wind speeds. This feature is remarkable in that it directly and significantly addresses the most glaring deficiency of wind as an energy source – it’s low capacity factor. I discussed increased capacity factor in two earlier posts entitled Capacity Factor and Very High Capacity Factor Wind Turbine.

Idea #3) Small Wind Business Model

This company (Small Wind Inc.) installs small wind turbines into people’s back yards, or perhaps onto the roofs of their homes or small businesses. However, Small Wind Inc. uses exactly the same business model as does the type of company that owns, maintains, and operates utility scale wind farms. That is, Small Wind Inc. erects, maintains, and repairs all of its wind turbines, and it sells the electricity generated by these small wind turbines to the power company. In exchange for the use of the home owner’s property, roof top, electrical wiring, wind resources, and so on, the homeowner receives a monthly check from Small Wind Inc.

Advantages of the Small Wind Business Model

  • Because Small Wind Inc. has tens of thousands of turbines in the field, it is in an excellent position to negotiate contracts with the power company. For example, it may have the negotiating firepower to be financially rewarded for the benefits of producing power at or near the point of consumption (instead of wasting energy by transmitting it over long distances through high voltage transmission lines).
  • Convincing a homeowner to put a big chunk of her life savings into an investment that is difficult to understand is a hard sell. Convincing a homeowner to climb an 80 foot tower with a pipe wrench clinched in her teeth to repair a broken wind machine is even more difficult. But it’s easy to sell someone on the idea of getting a monthly check when their only contribution is to avoid hitting base of the tower with a lawnmower!
  • Small wind machines are often considered more attractive than large wind farms. This allows small machines to be deployed in very large numbers. Coupled with the increased efficiency of generating power near the point of consumption, the small wind business model is good energy policy. The distributed nature of small wind also means that only small fractions of capacity will be offline at any given time for maintenance or repair.
  • Small Wind Inc. has experts in turbine siting. Only those homes and businesses that happen to have a good wind resource are selected as customers.
  • If 4 out of 10 homes in a small community have good wind resources, then the whole community can run on green power. Simply install 10 wind turbines on the 4 properties that have good wind resources.
  • Because Small Wind Inc.’s technicians are experts, cost of maintenance and repair of the wind machines is low.
  • Since Small Wind Inc.’s turbines may be deployed in large numbers, costs are lowered through purchasing parts and services in bulk, and economies of scale are realized in a variety of predictable and unpredictable ways.
  • Because power is produced at the point of consumption, transformers are not required to step voltage up to transmission line levels. This delivers significant cost savings.
  • Financing costs are low due to the expertise Small Wind Inc. has in this area, economies of scale, and the size, scrutability, and stability Small Wind Inc.

Idea #4) Walmart Rooftop Wind Turbine

Walmart Rooftop Wind Turbine

Though not shown in the diagram above, slats are positioned in the gap between the edge of the flat top of the Walmart building (dotted line) and the bottom of the dome roof. (This is the gap through which the ram air flows in under the dome roof.) The slats can open and close to allow or block this flow. With the wind direction depicted above, all of the slats on the left hand side of the diagram would be open in order to allow the ram air to enter from the left and concentrate beneath the dome, and all of the slats on the right hand side would be closed to prevent its escape. The original post describing this idea, Venturi Dome Baseball Stadium, has a diagram that shows how the slats work. Another post, Rooftop Wind Turbine, described a rooftop turbine for a typical residence.

Idea #5) Another Walmart Rooftop Wind Turbine

Aerial View Walmart Rooftop Wind Turbine

Simply put a Circular Wind Dam onto the roof of a Walmart store. In order to reduce turbulence, the store is first provided with a dome-shaped roof, and the Circular Wind Dam is mounted on top of the dome. The dome would look a little like the dome in the Walmart rooftop turbine described previously, but it would not have a hole and a turbine rotor in its center. Also, there would be no slats or gap between the edges of the flat top of the store and the underside of the dome.

Idea #6) VAWT Forest With OmniDirectional Flow Accelerators

Savonius Forest With OmniDirectional Flow Accelerators

Here’s the original post: VAWT Forest With OmniDirectional Flow Accelerators.

Idea #7) Highly Scalable Horizontal Axis Wind Turbine

In the diagrams below, the orange and dark blue lines represent guy wires. Comments are provided that explain which load each guy wire supports.

Downwind View, Highly Scalable Wind Turbine

Aerial View, Highly Scalable Wind TurbineThe Highly Scalable Horizontal Axis Wind Turbine is remarkable in that guy wires assist in supporting all of the large tower loads that are carried by the machine. This allows a great deal of weight and cost to be removed from the design. The original post explains in detail, and includes some very cool tilt-down versions.

Idea #8) Automatic Wind Turbine Blade Washer

Automatic Wind Turbine Blade Washer

If you don’t believe this embarrassingly simple device will work, then read the original post. You’ll be amazed that none of us ever thought of this idea until now.

Idea #9) Semi-Direct Drive Linear Turbine With Yawing Oblong Track

This one is too complicated to summarize, so I’ll just post a link to the original post that described it. But first, a word of advice – don’t be fooled by the apparent complexity of the diagrams. It isn’t as complicated as it first appears, and offers some tremendous performance advantages: Semi-Direct Drive Linear Turbine With Yawing Oblong Track.

More Good Ideas

Here’s a link to a page that is full of links to the best posts on the Salient White Elephant. That page has more links than are included the current post. Or if you’re really a glutton for punishment, you could just read every single one of the 127 Salient White Elephant posts!

June 27, 2009

Cable Untwisting System for Small Wind Turbine

Cable Untwisting System for Small Wind Turbine

The diagram shows the turbine yawed to the position where its power cables are completely untwisted. In this case, the cable that untwists the yaw system attaches to its topmost pulley wheel in such a way that it is not wrapped around that topmost pulley wheel at all. (The topmost pulley wheel is the one with the axis of rotation that is coincident with the turbine’s yaw axis). Now as the turbine yaws, it doesn’t matter which direction the turbine yaws in. Whichever way the turbine yaws, it wraps the untwist cable around the topmost pulley wheel, and in so doing it draws the twist sensing component that is attached to the untwist cable (colored purple) up to a higher elevation. When this part of the sensor passes close by the topmost twist sensor component (colored red), the control system knows that the power cables are twisted up. To untwist the turbine, the controller simply turns on the small electric motor at the base of the tower until the cable mounted twist sensor component passes by the lowest red colored twist sensor component, then turns the motor back off. If the system fails for some reason, the result is that the small untwist motor will burn up or blow a fuse – a minor repair indeed. The controller might wait until the wind isn’t blowing before untwisting the power cables.

Sensorless Variation

In this variation, the controller merely untwists the turbine every time the wind speed drops to zero (rotor blades not turning). Some kind of slip clutch mechanism might be provided to keep the untwist motor from burning up if it runs too long. Alternatively, the motor could be turned off whenever the power it draws jumps up by a large value (indicating the turbine has been completely untwisted). Or a simple mechanical switch could be tripped whenever the turbine is completely untwisted.

Manual Variation

A manual version of this device might also work well. In this case, the controller might issue some kind of mechanical or telecommunications signal to let someone know that the turbine needs untwisting.

May 19, 2009

I Dream of Genie Wind Dam

I Dream of Genie Wind Dam Construction - 1

I Dream of Genie Wind Dam Construction - 2


I Dream of Genie Wind Dam Construction - 3


I Dream of Genie Wind Dam Construction - 4

Now take a bunch of the structures depicted in the last step and connect them together with arcs to form a giant circular wind dam:

I Dream of Genie Wind Dam


Drive System

Notice that since a given “Totem Pole” of HAWT rotors are stacked one on top of another, they can share a common drive chain. This common drive chain ultimately drives a sprocket that drives the generator shaft. The generator is located in a small compartment on the ground, beneath its “Totem pole” of turbine rotors.

Does This Turbine Require a Yawing System?

I can think of two variations of the I Dream of Genie Wind Dam as regards the yaw drive. The first version would always have all of the rotors turning, regardless of which direction the wind is blowing in. This would be easier to explain if I could draw a nicer 3D model, but I’m not much of an artist, so bear with me here. All rotors can rotate simultaneously because some of the high speed wind moving around the outside of the dam seeks the “smallest radial path”, meaning it will eventually force its way through a rotor to the inside of the wind dam. The wind outside the dam that does not manage to find its way into this smaller radial space will instead shoot off the bowed out end of one of the wall sections (much like the wind shoots off the trailing edge of an airfoil). This will create a low pressure region in the smaller radial locations that “suddenly appear” next to this high speed air at the moment it shoots off that bowed out edge of the wall. This low pressure sucks low speed high pressure air from the inside of the dam through the rotor that is near the high speed air that is shooting off the bowed out end of the wall.

In the variation just described, the rotors do indeed need to assume one of two yaw angles, each separated by 180 degrees. (Alternatively, the blades may have variable pitch so that they can accommodate the flow of wind in either direction through the rotor.)

The other variation would have doors that can block the “hole” that is occupied by the rotor. In this variation, all the rotors that pass wind from the outside of the dam to the inside of the dam (given wind direction) have their doors opened, while the doors of all the other rotors are closed, rendering those rotors inoperable. Or you could do it the other way around, allowing air to be sucked out of the inside of the wind dam, but not to be forced from the outside of the wind dam to the inside. In this case a yaw system is not required. This is so because the door will always be closed when wind has a tendency to flow through the accompanying rotor in the “wrong direction”.

Third World Variation

Think of how easy it would be to build a low cost variation of this machine for the developing world! Imagine that instead of building a circular dam, we’ll build one that is polygonal, with an approximately circular shape. Maybe the circle has 10 or 12 sides. So we put concrete columns or telephone poles up in the shape of the polygon. We have one set of telephone poles for the “smaller radius” polygon, and another set for the “larger radius” polygon. Now we string cable between the poles. The following diagram shows just one side of the polygon, and uses blue to represent the cables connecting the “larger radius” polygon, and green to represent the cables connecting the “smaller radius” polygon:

I Dream of Genie Wind Dam, Third World Variation, 1

Now take some of that beautiful multi-colored fabric like they have in India and wrap it back and forth around the cables to imitate the I Dream of Genie Channels:

I Dream of Genie Wind Dam, Third World Variation, 2

When wind flows around sharp edges, it tends to create turbulence. To avoid this tendency, we might like to use something with a larger diameter than cables. How about we use cheap PVC pipe? Then we can string the cables through the inside of the PVC pipe. This way the cables can provide a great deal of strength and stiffness to the structure, yet the cables will have no adverse affect on the aerodynamics.

For More Information on Wind Dams

For further information related to this idea, see the earlier Salient White Elephant post: Circular Wind Dam.

May 12, 2009

Practical Artificial Pressure Differential Wind Turbine

Explanation of Artificial Pressure Differential Turbine 1

Explanation of Artificial Pressure Differential Turbine 2

In this way we have brought the low pressure on the downwind side of the parachute to the top of the tower.

Now, in your mind’s eye, eliminate the low pressure tube, and make the parachute whole again. Now attach a high pressure tube to the vertex of the parachute:

Explanation of Artificial Pressure Differential Turbine 3

Now we have techniques for bringing the high pressure of the upwind side of the parachute back to the tower, and for bringing the low pressure of the downwind side of the parachute back to the tower. Next, we build both the high pressure and low pressure extending tubes into the parachute at the same time. The low pressure tube has the smaller diameter, and it connects to the hole in the vertex of the parachute which has the same diameter. The diameter of the high pressure tube is larger than the diameter of the low pressure tube, and it encircles the low pressure tube so that a cross-section of the two tubes makes them look like concentric circles.

The next step is to transmit the high and low pressures to the bottom of the tower using the same technique. The tower is actually two towers – an inner smaller diameter low pressure tube with an outer larger diameter high pressure tube surrounding it so that a cross-section of the two makes them look like concentric circles. The high pressure and low pressure regions are connected at the bottom of the tower and, as expected, a HAWT rotor (with a vertical axis) is positioned between the two. The rotor, gearbox, and generator are at all at ground level.

The only thing I haven’t explained is how the low pressure and high pressure tubes make a right angle turn at the top of the tower. I was planning to draw some pictures of this, but I don’t think it’s really necessary. There are probably a million ways to do this. I will just note here that the parachute part automatically seeks the downwind position, and so it doesn’t require a yaw system. The right angle joint can be yawed, or it can simply be a cylindrical piece with vents positioned radially about its center. The vents have doors in them that can open and close to simulate yawing, though few moving parts would actually be required. (To illustrate, imagine an aerial view of this machine. Suppose the high and low pressure tubes approach the tower near the 9 o’clock position. Then the vents in the cylindrical piece at the top of the tower that are at positions 8 o’clock, 8:30, 9:00, 9:30, and 10 o’clock would all be open, while all of the other vents would be closed tight and aerodynamically sealed.)

The tower supports little weight, and it can be fitted with vents to let storm winds pass through unimpeded. This means the tower can be very light in weight, very inexpensive (relative to a typical HAWT tower), and it can have a large diameter if necessary. The parachute and the fabric part of the low pressure and high pressure tubes may have similar vents so that they also create little drag during storm winds. Maybe the parachute and fabric vents could even be somehow rolled up and stored inside the tower during storm winds.

Finally, note that the tower could be incredibly high. This is true because it supports little weight, has little overturning moment in storm winds, and can accomodate multi-level guy wires that can attach to the tower at any elevation, including at the very top of the tower!

Artificial Pressure Differential Turbine

Yawing Variation

Now we might imagine a long horizontal tube extending from the top of the tower. The supporting cords that tether the parachute are attached to the end of the horizontal tube that is far from the top of the tower. This way, the “vertex” (downwindmost end) of the parachute is right at the top of the tower, and the low and high pressure regions may easily be connected to the vertical (tower) low and high pressure concentric tubes. The horizontal tube yaws to align with the wind.

There are many other variations like this. Maybe we just build something that looks like a giant radio telescope dish, and attach its vertex to the top of the tower. This might not be so ridiculous if the parabolic dish has slats that automatically open when the pressure differential between the upwind and downwind sides of the slats exceeds a safe value.

Jet Stream Ram Air Wind Turbine

In earlier posts I have mentioned that a turbine capable of harvesting the energy of jet streams would probably be better for newspaper headlines than for an economical approach to wind electricity, since it would probably be cheaper and more effective to build several smaller low altitude turbines than a single monster that could tap into the jet streams. But it got me to realize that there are no jet stream turbines on the Salient White Elephant. This is Salient, to be sure, but is it White Elephant? Certainly not! And already I can hear not a little hubbub from the Canadian Parliament behind me patting their tables and gushing heah heah! So let’s just round things out with a couple of jet stream turbines before tensions run too high and one of the hairs on the head of the Right Honourable Stephen Harper springs noticeably out of place, shall we?

Jet Stream Ram Air Wind Turbine

For some reason, I’m usually biased toward using suction rather than high pressure in my flow accelerator ideas. But one advantage of using ram air pressure in the machine proposed here is that it would keep the long fabric tube inflated. This is very significant of course, since one of the biggest challenges in designing an airborne turbine is keeping weight to a minimum. Using high pressure might eliminate any rib-like supporting structure that would otherwise be required for the tube. I guess you’d have to stabilize the fabric tube by attaching it to the tethering cables at various intervals, but who knows… maybe somebody can design a way around this requirement.

Triple Tethered Variation

Jet Stream Ram Air Wind Turbine, Triple Tethered Variation

Multiple Blimps Variation

There are many variations of the ideas proposed here, but let me discuss one in particular. This idea emphasizes a technique I’d like to use to bring these pie-in-the-sky airborne turbines a little closer to feasible. Imagine eight blimps. Each is tethered by at least three cables to keep the blimps from moving around too much. An aerial view would reveal that the blimps are situated at the vertices of a gigantic octagon. It is important to note that the “diameter” of the octagon is far from insignificant. I can’t give you a number… maybe two or three football fields? Each blimp has a parachute and a high pressure tube, just as described above. All of the high pressure tubes converge at the center of the octagon, where they connect to a single larger high pressure tube that takes the jet stream wind down to the ground.

What’s so great about this variation? Well… let me first list what I believe may be the salient objectives of airborne turbine design:

  • If possible, no moving parts in the air.
  • If possible, no fiberglass, electrical cable, gearboxes, drive shafts, or electrical generators in the air. (Ever notice how the components of a wind turbine that have to do with mechanical and electrical power are about the most dense (heaviest) things known to engineering kind?!)

So the idea here is that instead of having eight different tubes, we attempt to minimize weight by having a single large tube carry wind from the jet stream to the ground. This is desirable because the really long distance is from the jet stream to the ground. Once at the center of the jet stream octagon, it isn’t much further to the blimps. So could we use this trick to reduce the overall weight of the machine?

Well, whether this trick will work or not… I think you see my point. What is needed is a kind of linear programming style optimization that minimizes weight of fabric per kilowatt of capacity.

Can We Really Reach the Jet Stream?

No. The jet streams are like 30 to 40 thousand feet off the ground. (The cruising altitude of jet airplanes!) So we can’t reach the jet stream with the design proposed in this post. But we can certainly reach a higher altitude than today’s state of the art wind turbines! If you want to see a more practical configuration that uses the principles described in this post, check out the Practical Artificial Pressure Differential Wind Turbine.

April 29, 2009

Flow Accelerator that Yaws by Force of Drag

VAWT with Shroud that Yaws by Force of Drag

HAWT with Shroud that Yaws by Force of Drag

April 27, 2009

Wind Turbine With Blimp Supported Flow Accelerator

Wind Turbine With Blimp Wind Turbine With Supported Flow Accelerator

Wind Turbine With Blimp Wind Turbine With Supported Flow Accelerator

Ultra High Altitude Low Visual Pollution Variation

There are a few problems with the turbine just described:

  • The weight of the suspended tarp may be prohibitive.
  • The tarp resource is poorly leveraged because much of the wind it redirects is low-energy wind that is close to the ground.
  • The blimp resource is poorly leveraged because much of its size and weight stems from the need to support the large part of the tarp that is close to the ground.
  • The blimps are not able to fly at high altitude because the tarp would simply be too heavy to lift to high altitude.
  • The exceedingly powerful suction developed by such a large flow accelerator may reverse the flow that is near to the ground and not too far above the turbine and the lower edge of the tarp.

This variation proposes to solve these problems and permit extremely high altitude wind to be harvested:

Wind Turbine With Blimp Supported Flow Accelerator, Side View, High Altitude Variation

Wind Turbine With Blimp Supported Flow Accelerator, Side View, High Altitude Variation

Now the blimps and tarp may be separated from the turbine by a very large vertical distance, and the suction is carried to the ground through light-weight fabric tubes that are supported on the guy wires. As an alternative to the design shown above, one tube can be fixed to carry high pressure and the other can carry low pressure. The turbine is then placed between the openings of these two tubes at ground level.

I wonder if this design or something like it would be capable of reaching the jet streams? I guess that’s pretty outrageous, and probably not even necessary. (It may be more economical to harvest lower altitude winds using several machines than to build a single gigantic machine that reaches the jet stream. Plus you’d have the safety issue – what if a cable breaks? Of course, I guess you could always put it out in the ocean. Another potential problem with extremely high altitudes is that the wind direction up there might not be the same as on the ground. But then again, if you’re getting so much energy from altitude, you could just put the turbine rotor inside the tube, and also put the rotor on the ground so that it doesn’t have to yaw. This way the wind velocity near the ground would be insignificant compared to the velocity of air moving through the tube, and so it wouldn’t matter which way the rotor were pointed, or which way the opening of the tube were pointed. In fact, you could use a HAWT rotor that spins about a vertical axis, and let the tube extend from the rotor in the vertical direction.)

April 24, 2009

Super Honkin’ Counter-Rotating Water Cooler Cones

Tangential velocity is a function of radius. The radius of the vertex of a cone is zero, so this shows that if you get an empty paper cone from the water cooler and roll it across your desk, it will roll around in a circle. This is kind of nice, since a cone seems very close to the ideal flow accelerator. So if we put the vertices of two cones together, so that the open ends of the cones point in opposite directions, then roll the cones, their vertices will stay together, and the cones will “yaw” all the way around through a 360 degree arc and end up back where they started. So we roll the cones around so that one opens up in the direction of the wind and the other opens up in the downwind direction, put a HAWT rotor right in the middle of the two vertices, and we have a very powerful wind machine with all the important components at ground level. The only problem is that the cones smash all the corn in the field as they yaw around. But this is easy to fix. Just fit the mouths of the cones with a rim and the vertices with a rim, then separate the cones by the appropriate distance. The following diagram illustrates the general idea (it’s a terrible drawing… but I’m in a hurry):

Super Honkin' Counter-Rotating Water Cooler Cones

So now if we have two concrete roads, the cones can roll around and not smash all the corn in the field. Interestingly, it seems these shapes might be perfect for rolling around on top of a dome – like an enclosed baseball stadium or something like that.

Circular Wind Dam

The Circular Wind Dam first described in this post may not provide much improvement over the current state of the art. However, it lays the groundwork for some variations that I think may be very viable indeed. These variations are presented toward the end of this post, but in case you’re in a hurry, here’s a general idea of the type of machine that we will be working toward:

Circular Wind Dam, Rotated Energy Exchange Variation

Also, make sure you read the section entitled Advantages of the Wind Dam Over Current State of the Art Wind Turbines, as this section presents some very very powerful ideas.

Circular Wind Dam

A circular hallway is made of brick or concrete. It is extremely high, and it has an extremely large diameter. A number of walls block the hallway inside:

Aerial View of Circular Wind Dam, Twelve Walls Block the Inside of the Hallway

Here is a cross-section of the Wind Dam that shows one of the walls that block the hallway. The wall has a hole cut into it, and a wind turbine rotor captures the energy of the wind that flows through the hole:

Cross-Sectional View of Circular Wind Dam Showing Wall and Turbine Rotor

The outside of the Wind Dam has holes cut into it. These holes have sliding doors that are kind of like garage doors. The doors can block the holes, or they can open the holes to the outside air:

Circular Wind Dam

The holes near the upwind side of the dam and the holes near the downwind side of the dam are opened, while all of the other holes are kept closed. Now wind flows through the hallway from the upwind side to the downwind side. The wind turns the turbine rotors that are embedded into the walls that partially block the hallway, and the turbine rotors drive generators to make electricity. The turbine rotors and generators work just like the rotors and generators on a standard wind turbine, except that gearboxes might not be required between the turbine rotors and generators of the Wind Dam. This is true because the Wind Dam and the holes that house the turbine rotors have a concentrating effect on the wind, so that wind flows through the holes and turbine rotors at a much higher velocity than the velocity of the wind outside the dam.

Concentric Hallways Variation

A wall is added inside of the hallway that separates it into two hallways that form concentric rings:

Circular Wind Dam, Concentric Hallways Variation

The previous variation of the Wind Dam had holes in the outside wall – that is, the wall that faces the outside of the dam. In addition to these “outside holes”, the Concentric Hallways Wind Dam has holes that face the inside of the dam (the area enclosed by the dam). The holes facing the inside of the dam are controlled in exactly the same way as the holes that face the outside of the dam. That is, only the holes that are near the upwind and downwind sides of the dam are kept open, and all of the other holes are kept closed. Oddly, wind flows through the inside (smaller diameter) hallway from the downwind side to the upwind side.

Since wind flows through the hallways in opposite directions, we can replace the horizontal axis rotors with a vertical axis rotors. There are many ways to do this, but for the sake of making the diagram easy to draw, let’s use Savonius rotors with flat vanes. Notice that wind will always flow in opposite directions through the hallways regardless of which direction the outside wind is blowing:

Circular Wind Dam, Concentric Hallways VariationHere’s a diagram that shows how wind flows through the dam:

Circular Wind Dam Concentric Hallways Variation Showing Approximate Flow of Wind

Advantages of the Wind Dam Over Current State of the Art Wind Turbines

  • Most of your investment in a current State of the Art Horizontal Axis Wind Turbine (SOTAHAWT) is used to purchase sensitive, short life components that are difficult to design and that are easy to break. The majority of an investment in a Wind Dam purchases the structure itself – basically just a pile of bricks – and this investment will probably still be productive 100 years from today. (Think of the great hydro-dams in the NorthWestern United States.) And if somebody knocks a hole into the wall… big deal – just fill it in with a few more bricks. But suppose instead that an expensive component on one of your SOTAHAWTs fails. Suppose have to replace a turbine blade that is 150 feet long! You buy a new blade, wait 3 months for it to be manufactured, somehow get that 150 foot blade to the site and then weave it in between the other turbines, hire a crane, take the old blade down, put the new one up. You see what I mean – most of your investment might as well be stored in a crystal goldfish bowl that is balanced on top of a 300 foot FM radio tower. My goodness… how can you even sleep at night!? I don’t know how large the turbine rotor blades will be in the Wind Dam, but even if they are 20 feet long… so what? They don’t represent a significant fraction of your investment, and repairing and replacing them are no big deal.
  • The Wind Dam is virtually indestructible. It can assume a very low drag profile during storm winds by opening all of the doors in the inside and outside walls of the dam. Its drag profile may be further reduced by installing sliding doors into the wall that separates the two concentric hallways. These sliding doors may also be opened during storm winds to keep the drag profile to a minimum. No large sensitive components (rotor blades, etc) are required to withstand storm wind drag forces.
  • Wind turbine rotors, gearboxes (if required), and generators are all located inside the Wind Dam. Thus, these relatively sensitive components are well protected from wind, rain, snow, and other weather. And it would be easy to provide heating for these components during cold weather.
  • The Wind Dam is very quiet because noisy components are located inside the dam.
  • Electrical components are virtually immune to lightning strikes. This is true because these components are housed inside the dam, and because the dam has lightning rods on top to direct lightning strikes away from sensitive components.
  • The life of a Wind Dam will probably far exceed the 20 or 30 year lifespan of your typical SOTAHAWT. It is obvious that this would hold true for the structural part of the Wind Dam (the bricks). What is less obvious is that smaller rotors that turn at higher speeds that drive higher voltage electrical equipment, all of which live in the luxurious indoor environment of the wind dam, will also last much longer than the massive SOTAHAWT components that are stressed, fatigued, and pounded by wind, rain, snow, ice, cold temperature, humidity, and lightning year after year after year. Also, smaller components last longer than larger components because they are easier to design and because they are subjected to less vigorous mechanical abuse than are larger components.
  • Since the wind turbine rotors and electrical equipment live inside the Wind Dam, it’s hard to imagine the machine posing any danger whatsoever to the public. Can you imagine what would happen if a 150 foot rotor blade became detached from a SOTAHAWT? I wouldn’t be surprised if it could pierce through the roof of an enclosed baseball stadium. This also reflects in the cost of wind generated electricity. Because of the danger of accidents, SOTAHAWT components are quite significantly over-engineered. But normal safety margins could easily be justified in the design of the Wind Dam, and this will significantly lower costs.
  • An oft cited disadvantage of wind energy is that it has a very low energy density. The wind dam solves this problem. I don’t know what the water pressure is at the bottom of a hydro dam, but I know it’s huge. Water is heavy. But the fact that the energy density of water is high means that you need a lot of concrete to hold it back. Maybe your hydro dam is only as long as a couple of football fields, but it has 50 million dollars worth of concrete in it. But the wind dam is holding back something that is much lighter, so the walls do not have to be so massive. Maybe the circumference of the wind dam is 75 football fields, but since the walls are thin, they still have the same total amount of concrete: 50 million dollars worth. Warm up to the idea that the density of investment capital is directly proportional to the density of energy. Spreading energy out over a larger area does not raise the capital cost of the structure required to harvest that energy, it merely spreads the same capital cost out over the same larger area. Getting uptight about the low energy density in wind is like worrying about whether you should stack your money in a pile when you count it, or whether you should lay your dollar bills end to end across the bedroom floor. Actually, if you carpet your house with dollar bills, it looks like a lot more money than if you just put them in a greasy old stack with a rubber band. (But what about storms? Won’t the wind dam have to be massive and expensive in order to withstand storm winds? No. Consider the hydro dam. If more precipitation falls than you expected, you simply open the gates and let the water run through the dam. But exactly the same approach works for the wind dam. If there’s a hurricane, you simply open all the doors and let the wind pass through unimpeded. And if you have trouble making this approach work, remember that the light weight surfaces of a wind dam may be folded up, rolled up, retracted, or even laid down on the ground.)

Real Estate Sharing Variation

The wind dam can be built near areas that have residences or commercial activity, since there’s no possibility whatsoever of an accident, and since the noise is probably mostly contained inside the hallways. Holes can be cut into the walls so that roads can go through. In this case, the air is simply routed over the passageway in an aerodynamically friendly way. You could put a wind dam around a cornfield, and make a passageway big enough for a combine to get through.

Wind Vane Doors Variation

Instead of garage doors that roll up into the ceiling, maybe curved doors could be used instead to further concentrate flow in the hallways:

Circular Wind Dam Concentric Hallways with Wind Vane Doors

Very High Altitude Variation

Imagine an extremely tall (500 feet?) circular wind dam. It may have a single internal hallway, or it may have two concentric hallways. The very-high-altitude very-high-velocity wind causes the air inside the hallway(s) to also move at high velocity. This action may be accomplished in any of the ways depicted above: doors that open and close, curved vanes, or via some other appropriate aerodynamic components. However, once inside the hallway, the energy is transferred from the highest part of the hallway to a lower altitude region of the inside of the hallway. This may be achieved by blocking all altitudes within the hallway except for those that are (say) 300 feet or lower. Or it may be achieved by using nearly horizontal airfoils that direct the high-altitude energy downward toward the earth, or by some other kind aerodynamic hanky-panky. Bringing the high energy to the lower elevations allows the turbine rotors, gearboxes, and generators to be positioned at a lower altitude.

As stated in another post on this blog, Synopsis of the Best Design Tricks Developed to Date, if you can’t put the turbine up into the high altitude high energy wind, then bring the high altitude high energy wind down to the turbine. (I wrote that synopsis of best design tricks post in a hurry… don’t be disappointed because it’s actually not a very good post. Hope to have time to rewrite it later.)

Energy Exchange Variation

Circular Wind Dam, Energy Exhange Variation

For ideas on how to design a very tall H Rotor (Straight-Bladed Darrieus), see High Speed Centrifugally Stable VAWT. Of course, any VAWT may be used with the energy exchanging version of the Wind Dam, and the Savonius may be a good choice as well.

Another approach would use H Rotors with a horizontal axis. One end of a rotor’s axis would be anchored to the smaller diameter wall, and the other to the larger diameter wall. The rotor’s axis should be parallel to a line that extends radially from the center of the circle formed by the smaller diameter wall segments. (This is, or course, the same point that is the center of the circle formed by the larger diameter wall segments.) And, or course, the H Rotor’s axis would also be parallel to the ground. Anyway, you stack these horizontal axis H Rotors one on top of the other so that they form an “aerodynamic barrier” that extends from the ground to the height of the two walls (smaller and larger diameter walls). Since the axes of these rotors are all parallel, they can all be connected with a common chain drive. The chain extends to a sprocket which is on the generator shaft, and the generator shaft is on the ground.

Furthermore, if it is determined that HAWT rotors would provide better efficiency or this design, simply replace the 3 bladed H Rotors above with walls that can rotate through an angle of 180 degrees. Now cut round holes in these walls, and install HAWT rotors in the holes. Now rotate the wall by 180 degrees if the wind passes through the holes in the direction that is opposite the direction that the HAWT rotors are intended to act upon.

Two Concentric Circular Wind Dams, Energy Exhange Variation

Rotated Energy Exchange Variation

Circular Wind Dam, Rotated Energy Exchange Variation

I wonder if you could put some kind of a smooth geodesic dome structure on top of a Walmart to smooth out all the turbulence generated when wind pushes up vertically from the walls and tries to make the right angle turn to flowing across the roof. And I wonder if you could build a wind turbine that looks a little like the one above and put it on top of that dome roof.

Circular Wind Dam, Rotated Energy Exchange Variation

Circular Wind Dam, Rotated Energy Exchange Variation

Circular Wind Dam, Rotated Energy Exchange Variation

Circular Wind Dam, Rotated Energy Exchange Variation with Alternating Diffusor Concentrators

Circular Wind Dam, Rotated Energy Exchange Variation with Alternating Diffusor Concentrators

Circular Wind Dam, Rotated Energy Exchange Variation with Alternating Diffusor Concentrators 2

Circular Wind Dam, Rotated Energy Exchange Variation

Circular Wind Dam

Controlling Vortex Shedding

Circular Wind Dam, Control of Vortex Shedding

Circular Wind Dam, Control of Vortex Shedding (closeup)

High Altitude Variation

Suppose the wind turbine blades extend from an elevation of 50 feet up to an elevation of 150 feet. We would like for the walls of the wind dam to reach an altitude of 300 feet. This allows us to extract some of the energy from higher energy density wind at altitude. There are a variety of ways I can think of to do this, but I’m wondering if all that is necessary is to make the walls of the wind dam lean in one direction or the other:

Wall Leans to Access High Energy Density Wind at Altitude

At first, this solution would seem to be sensitive to wind direction. But I’m wondering if maybe that isn’t the case. Imagine, for example, wind flowing from right to left in the diagram above. Intuitively, it would seem that high energy high altitude wind would be driven downward towards the earth by the slanted portion of the wall. This is reminiscent of a flow concentrator. But if instead wind flows from the left to the right, high energy high altitude wind ramps over the slanted portion of the wall, reminiscent of a flow diffuser. In this later case, wouldn’t some of its energy still be transferred to lower altitude wind, albeit through the action of suction rather than through the action of compression?

Of course, it is also important to note that a certain amount of the high energy high altitude wind will be deflected downward (toward the earth) even if the entire wall is vertical (rather than having the upper part slanted).

In any case, if a leaning wall proves to be useful, note that it is easy to build one by anchoring fabric to the guy wires of a tower:

Making Leaning Fabric Wall with Guyed Tubular Tower

Better Diagrams of High Altitude Variation?

I’m not much of an artist, and I’m using 2D software to boot. But here’s an attempt at rendering one of the variations that captures energy from high-altitude winds without using tall turbines:

Aerial View of Pseudo-High-Altitude Circular Wind Dam

One Section of Polygon of Pseudo-High-Altitude Circular Wind Dam with Darrieus Rotors

Side View of Pseudo-High-Altitude Circular Wind Dam with Darrieus Rotors

Circular Wind Dam Pseudo-High-Altitude Variation #2

Aerial View of Pseudo-High-Altitude Circular Wind Dam Variation #2

Side View of Pseudo-High-Altitude Circular Wind Dam Variation #2 (wind blowing from right)

Side View of Pseudo-High-Altitude Circular Wind Dam Variation #2 (wind blowing from left)

Circular Wind Dam Pseudo-High-Altitude Variation #2 Stacked on top of Rotated Energy Exchange Variation

Just stack the high altitude part:

High Altitude Part

On top of the low altitude part:

Circular Wind Dam, Rotated Energy Exchange Variation

Put the towers inside the brick walls, and make the lower ends of the tarps come approximately to the tops of the brick walls.

Circular Wind Dam Pseudo-High-Altitude Variation #3

Aerial View of Pseudo-High-Altitude Circular Wind Dam Variation #3

Using HAWTs instead of VAWTs

Of course, HAWTs may be substituted for VAWTs in the above designs. Just block the regions of accelerated flow with walls, cut holes in the walls, and put HAWT rotors into the holes. The only other necessary modification is that you’d have to figure out a way to “yaw” the HAWT by 180 degrees. This is so because the wind may flow in either direction through the hole, depending on the direction of the ambient wind.

Non-Circular Variation

Non-Circular Wind Dam Rotated Energy Exchange VariationIf a non-circular path is properly designed, the wind dam will still be equally effective (or almost equally effective) regardless of wind direction. For an explanation of how to design a non-circular path, see the earlier post 20 Megawatt Direct Drive Darrieus.

Yawing Wind Dam

The diagram looks silly, but don’t dismiss this post too quickly – I think this is a terrific idea:

Yawing Wind Dam

There are many variations, but as we explore those variations, keep in mind the salient points of this machine:

  • direct drive
  • not only is the generator at ground level, the turbine rotor is on the ground as well!
  • incredibly scalable
  • low maintenance.


Suppose we have five towers in the shape of a giant pentagon. Cables run between adjacent towers, and the shroud is attached to those cables. In this case, only the shroud is yawed:

Yawing Wind Dam, Only The Shroud, Turbine, and Generator are Yawed

Or it can look like this:

Aerial View of Yawing Wind Dam Only The Shroud, Turbine, and Generator are Yawed

Instead of making the shroud out of fabric like nylon, it can be solid. It would look kind of like the top half of a radar dish. In this case, it might be supported by a number of lattice structures on wheels.

Single Tall Tower Variation

Yet another variation would use a single very tall guyed tower. Because the bottom of the shroud is like a circular arc that sweeps through 180 degrees, the diameter of the arc at the lower end of the shroud can be made larger than the diameter of the anchor points for the guy wires. A long horizontal tube at the top of the tower supports the top part of the shroud. The turbine rotor and generator are on rails or wheels and trace out a circle as the machine is yawed through 360 degrees.

Alternatively, the guy wires are used not only to support a very tall tower – they also support the shroud. Suppose there are 5 guy wires. A cable connects the 5 guy wires so that an aerial view of it looks like a pentagon. There are several levels of these horizontal pentagonal cables, so that an aerial view of them looks like several pentagons of different sizes. The shroud is connected at each side to each of these cables, and rides these pentagonal cables as it yaws:

Yawing Wind Dam, Single Tower Variation

Tipi Variation

Just like the single tower variation just described, except now the entire surface traced out by the guy wires is covered with fabric. It looks like a giant American Indian tipi. Now all of the fabric that runs the circumference of the tent from an elevation of (say) 20 feet to 30 feet is separated from the rest of the fabric. It looks like a giant pentagonal wedding ring. This ring has two holes cut into opposite sides of it, and a fabric tube connects these two holes. The tube has the turbine rotor inside of it. The tube and the ring yaw, and the rest of the tent is stationary. The turbine is near the tower (or coaxial with the tower) so that it doesn’t have to move much when yawing.

HAWT with Torqueless Shaft

HAWT with Torqueless Shaft

April 23, 2009

Extremely Tall Direct Drive Wind Turbine

No Wind, Extremely Tall Direct Drive Wind Turbine

Aerial View, Extremely Tall Direct Drive Wind Turbine

Wind Blowing, Turbine Producing Power, Extremely Tall Direct Drive Wind Turbine

Airborne Wind Dam

A blimp suspends a giant flow accelerator with a small high-power turbine in the middle of it. In other words, a blimp suspends a turbine that looks kind of like the one described in this earlier post:

Wind Turbine with Flow Accelerating Shroud

This rotor will spin at high rpm, so it is easy to make it a direct drive machine. As described in prior posts, the bottom of the flow accelerator can attach to the top of a supporting tube in order that the blimp doesn’t have to carry the entire gravity load of the shroud and turbine. The tube is on wheels and a control system causes it to follow the blimp around with changing wind speed and direction.

Here’s another variation:

Airborne Wind Dam

Airborne Wind Dam with Lattice Support

Blimp With a Hole Variation

In this variation, the blimp has a cylindrical hole right through the middle of it (running down its longitudinal dimension). The small high-speed direct drive turbine rotor is inside this cylinder. A large shroud like the ones depicted above encircles the blimp in order to further accelerate flow through the cylinder and direct drive turbine rotor.

Airborne Wind Dam, Cylindrical Hole in Blimp

Skyscraper Variation

In this variation, the blimp is moored to the top of a skyscraper. When the windspeed gets too high the blimp simply detaches from the building and flies to a nearby airport where it lands until the storm passes. I hate to make the next suggestion, because somebody might actually do it. The blimp could be moored to the top of a mountain. This would produce a lot of visual pollution, so I don’t think it’s a very good idea.

Lightweight Electrical Components Variation

The blimp is big and round. It has plenty of room for a ring generator. Of course, you don’t need a ring generator to make this machine direct drive, because the accelerated flow through the cylinder is already sufficient for making the turbine rotor spin at high rpm. But if the turbine drives a very large diameter ring generator, then electricity can be generated with high voltage. If voltage is high, then current is low, and the weight of electrical components such as the electrical cables is minimized. (I’m assuming insulation weighs less than copper.)

Structural Electrical Cable Variation

This option develops electrical cable technology that is suitable both for conducting electrical power and for carrying a tensile mechanical load. This minimizes the weight of the mooring cable, since the electrical cable simultaneously provides both mechanical and electrical functions.

Aerodynamic Transmission Variation

The diagram below is a little ridiculous, but I’m a terrible artist, and I’m using 2D software to create these diagrams, so for this diagram I decided to come up with something that just shows the general idea. And the general idea is to reduce the weight of airborne components by using a light-weight hollow tube to moor the blimps. The hollow tube transmits the high air pressure that accumulates at the center of the dam (shroud) to the ground. A small high-speed turbine rotor drives a generator at the ground level end of the tube. The turbine rotor is high speed, and so it doesn’t need a gearbox. The airborne system carries no electrical or mechanical devices, and so it is light in weight.

Airborne Wind Dam With Aerodynamic Transmission

This idea suggests an interesting question – what happens to the Betz Limit when de-energized air doesn’t flow away from the turbine on the downwind side of the turbine “rotor”?

Of course, the aerodynamic transmission may also be applied to more convention turbine designs. Perhaps a shroud is positioned at the top of a conventional wind turbine tower, and the tower itself is used to route the high pressure air to a turbine rotor and generator on the ground.

Pressure Differential Aerodynamic Transmission Variation

A wall is added to the inside of the aerodynamic transmission tube. This separates the tube into two halves, just as though there were two tubes instead of one. One half of the tube opens on the high pressure side of the shroud, and the other half opens on the low pressure side. This pressure differential is carried to the ground where one side of a high-speed turbine rotor encounters the high pressure, and the other side of the rotor encounters the low pressure. Air thus flows through the rotor and turns an electric generator.

Cross-Section of Aerodynamic Transmission Tube Showing Transmission of Pressure Differential

Rotating Drive Shaft Variation

Hollow, light-weight, rotating tubes are connected end-to-end through universal joints. The tubes are attached to the mooring cable and so are suspended beneath the mooring cable. A high-speed rotor at the top transmits power to the ground through the rotating drive shaft tubes. The spins at high rpm so drive shaft torque is low.

April 21, 2009


Filed under: Horizontal Axis Wind Turbine (HAWT) — Tags: , — Salient White Elephant @ 2:50 pm

HAWT rotors are configured in various ways within a plane, and are mechanically linked to drive the same generator.


See VAWT Wall.

Torque-Speed Decoupling HAWT

I don’t have near enough time to do justice to this idea. I’ll just post it in very abbreviated form and leave the rest to your imagination.

Torque-Speed Decoupling HAWT, Downwind View

Torque-Speed Decoupling HAWT, Side View

Torque-Speed Decoupling Mechanism

The chain-like structure that protrudes from the inner perimeter of the rim of the spoked wheel is essentially just a bunch of rollers whose axes are parallel to the rotor axis of rotation. The fact that these engaging mechanisms are rollers (rather than just fixed pegs) permits very efficient transfer of mechanical power from the rotor blade to the chain drive.


The high speed generator shaft can be attached to a second smaller (aerodynamic) rotor. This permits more efficient conversion of energy flowing through the axial region of the rotor disk, and eliminates the big fat twisted small-radius section of the larger rotor blade.

The chain drive may be replaced with a high-speed rotating shaft whose axis of rotation is coaxial with the longitudinal dimension of the blade (coaxial with the blade spar). The rotating shaft goes down the center of the blade just like the chain drive. A tire at the blade tip engages a ring that looks like a giant washer and that protrudes from the inside of the rim of the spoked wheel. The tire drives the high-speed shaft that goes through the center of the blade. Assuming a 2 bladed turbine, the two shafts will be counterrotating. One of these shafts drives the generator rotor and the other drives the “stator” in the opposite direction. In this design, the generator rotates with the blades and slip rings will be required to transmitt power from the rotating generator.

Yet another variation has the chain drive or high-speed rotating shaft running longitudinally inside the spar of an H-Rotor Darrieus. In this embodiment, either the generator can rotate with the blades and transmitt its power out through slip rings, or else another sprocket near the tower protrudes from the spar and drives a rotating ring which in turn drives a generator that is fixed with respect to the turbine foundation.

April 10, 2009

Biplane Wind Turbine Rotor

Biplane Wind Turbine Rotor

Now suppose that the struts that connect the two layers of blades are themselves airfoils. Would they act like the concentric rings in the Wind Turbine Concentric Rings Flow Accelerating Shroud? And if so, would the fact that each end of each strut is terminated at a turbine blade result in minimal energy loss due to vortices created by the short “concentric ring imitating” airfoil struts?

Biplane Wind Turbine Rotor, Imitating Concentric Rings Shroud

Precision Wind Turbine Yaw Fin

The upwind variation has two airfoils that are each pitched near the stall angle. When the wind shifts directions, one of the airfoils stall, while the other generates the yaw moment at nearly maximum lift:

Aerial View Precision Wind Turbine Yaw Fin (Upwind Variation)

I suppose the upwind variation will produce stable yawing behavior only if the airfoils have gentle stall characteristics, and only if they can be pitched very near to the stall angle.

Now for the downwind variation. If the wind shifts by (say) 2 degrees, then the angle of attack for one airfoil increases by 2 degrees while the angle of attack for the other airfoil decreases by 2 degrees. The yaw moment thus generated is as if the wind had actually shifted by 4 degrees.

Both of these variations allow for the use of asymmetrical airfoils, which produce more lift than symmetrical airfoils.

Aerial View Precision Wind Turbine Yaw Fin (Downwind Variation)

April 3, 2009

Closed Loop Direct Drive for Highly Scalable Horizontal Axis Wind Turbine

Closed Loop Direct Drive for Highly Scalable Horizontal Axis Wind Turbine

This drive system has sensors in the turbine blade that measure how much each blade is bent by lift and other forces. The shrouds that house direct drive generator windings are moved in the upwind or downwind direction in order to properly position them for the approaching turbine blade. What kinds of sensors might provide the proper information to the closed loop control system that adjusts the position of the generator windings? I don’t know. Strain gauges embedded into the blade spars that communicate with the controller via a radio link? A cylindrical cavity inside the blades that runs in the longitudinal direction and that has a laser at one end and a mirror at the other?

Another idea would give the turbine blade a permanent magnet that can protrude (longitudinally) from the blade tip. With this design, the shroud that houses the generator windings move to a location that is completely outside of the rotor disk (i.e. the swept area). As a blade approaches the windings, its magnet is pushed out of the blade tip. Once it passes the generator windings, the magnet is retracted so that it doesn’t create drag during the rest of the blade’s trip around the rotor disk.

Well it’s a couple of days after I wrote this, and re-reading it, it seems like a pretty stupid idea. I guess I just keep thinking about how once the turbines starting getting really big (1 megawatt or so), then the really sexy power electronics came onto the scene. Making this blog has proven to me that wind turbine innovation is likely to come from integrating other already well-known technologies, like power electronics. They didn’t invent power electronics for wind turbines, but once the machines got big enough to justify the cost of integrating these well understood devices and circuits, the addition of them provided much improved performance, and probably cut the cost of energy as well. So I’m just thinking that closed loop control technology might be one of the next things. Like for example, suppose it’s difficult to manufacture a giant ring generator and still maintain the tight tolerances required for good performance (given temperature changes, etc). Then maybe strain gauges of other sensors could be added, and a closed loop control system could adjust the radius of the rotor or stator at various angular positions… kind of like the way you turn the little nut-like things on a bicycle wheel to make it perfectly round and so that it won’t wobble side to side. So instead of trying to make the perfect ring generator, you just let the control system continually adjust the various tolerances based on sensor readings taken every minute or so. One thing’s for sure… pretty much every wind turbine configuration that can be thought of has already been thought of over all these centuries. So I wish I was in a position to look at how other technologies might be integrated in order to lower the cost of wind electricity… but I’m just not in a position like that. (Another thought that comes to mind is self-health checks… like they have in avionics systems… they have raised the detection of equipment failure or underperformance or abnormal performance to a high art form.)

Magnets In Rotating Shroud

Magnets In Rotating Shroud
This design is applied to the Highly Scalable Horizontal Axis Wind Turbine. I would put the rotating shroud on the other side of the nacelle, away from the blades, but that would require the mechanical power to go through the shaft, and I was trying to avoid that. I wonder if you could just have a rotating shroud with no magnets in it, and wedge its trailing edge between two tires and directly drive an off the shelf generator?

Rotating Shroud Drives Tires

April 2, 2009

Transmitting Mechanical Power Down the Tower

Filed under: Horizontal Axis Wind Turbine (HAWT) — Tags: , , , , — Salient White Elephant @ 4:05 pm

I always wondered why nobody ever tried to put a HAWT gearbox and generator on the ground rather than at the top of the tower. I always just assumed that if I were a mechanical engineer, then I’d know that the numbers just don’t work. But then it occurred to me that this is exactly how the Darrieus rotor’s power gets to its gearbox and generator. Of course, only half of the torque comes from the top of the tower, but still… it got me to wondering if it might somehow be feasible to put the HAWT gearbox and generator on the ground. And my elementary school teachers always assured me that there’s no such thing as a stupid question, so…

(bear in mind that these same teachers would always ask me if I wouldn’t like to spend a month of my summer vacation coming in for English grammar tutoring so I could get a hundred points of extra-credit…)

Transmitting Mechanical Power Down the Tower

March 27, 2009

Wind Turbine With Flow Accelerating Shroud

Everyone knows that a smaller wind turbine rotor may be used if a shroud accelerates flow in its direction. Most people who know much about the design of utility scale wind turbines don’t take this idea seriously, and I confess I never took it seriously either. It just seems like an idea that cannot be applied to a large wind machine. But here are some ideas for light-weight shrouds that can be easily retracted during storm wind conditions:

Wind Turbine With Flow Accelerating Shroud

The idea is to provide a shroud that is made from some flexible material (nylon or whatever… I don’t know anything about materials). The shroud is shaped like a giant cone with its large end opening in the downwind direction (colored aqua in the diagram). But the cone is flexible… how will it be supported? It is supported by attaching its large opening to the small opening of another conically shaped shroud (colored purple in the diagram). The large end of the purple shroud opens in the upwind direction. The two upwind openings of these shrouds are each supported by a rigid ring – sort of like bending a couple of giant coat hangers into circles:

Downwind View Wind Turbine With Flow Accelerating Shroud

In order to help the shrouds hold their proper shapes, some kind of minimally designed light-weight rigid supports may be added:

light-weight ribs may be sewn into fabric of shroud to help maintain proper shape

Now we get to the second big problem with shrouds – their terrible storm wind drag profile. But since the shrouds are nothing but flexible fabric, they can easily be designed to fold into a shape that has a low drag profile! In fact, if the shrouds were well designed, it seems like maybe this machine would have even a much improved storm wind drag profile as compared with a traditional design with the same rated power output.

Giant Spoked Annular Wheel Variation

Here’s an interesting variation on this idea. This shroud sits on the ground or on a small post with bearings for yawing:

Wind Turbine With Spoked Annular Shroud, Downwind View

One interesting feature of this idea is that it makes use of all of the energy in the wind all the way down to the ground!

Wind Turbine With Spoked Annular Shroud, Side View

The following diagram shows how the shroud looks like a doughnut sliced in half (the doughnut slice and the cross section slice are in different planes):

Cross Section of Side View of Fabric Part of Shroud

The next diagram shows how the shroud may be deployed or retracted much like opening and closing drapes:

Wind Turbine With Spoked Flow Accelerating Shroud, Deploying the Shroud

Partial Cross Section of How Shroud is Deployed or Retracted Like Opening and Closing Drapes

Of course, another way to reduce the storm wind drag profile is to just lay the whole turbine down on the ground. Can’t get a much better drag profile than that!

Linear Turbine Variation

Here’s a variation that resembles the Direct Drive Linear Turbine With Yawing Oblong Track:

Shrouded Linear Turbine With Elongated Oblong Track

Create a free website or blog at