Salient White Elephant

May 10, 2009

CounterRotating Direct Drive Wind Turbine

A number of posts to this blog describe turbines (both HAWTs and VAWTs) having blades that are supported at the high-speed blade tips rather than at the low speed parts of the blades. This is usually accomplished by having a blade tip engage some sort of slot that is cut into a blade guiding track, so that the action is somewhat reminiscent of the way a rail guides the wheel of a train. One of the biggest problems with this approach is how to come up with a simple, reliable way of converting the kinetic energy of the blades to electricity. The conversion apparatus should not be unweildy or cumbersome, and should not require too much hardware. (For example, in some of my earlier posts I have suggested distributing generator windings all along a very lenghty blade guiding track. This is clearly undesirable because it would make the tracks very heavy and very expensive.)

I think I may have stumbled on a good way to deal with this problem just a minute ago while writing the post entitled: Skyscraper with H-Rotors. I didn’t do a very good job of describing the counter-rotating drive idea in that post, so I’ll attempt to do a better job of it here. (Although the technique described here may be applied to many of the HAWT and VAWT turbines proposed on the Salient White Elephant, you might want to read Skyscraper with H-Rotors first, since I’ll draw the diagrams and everything assuming that we’re applying the counter-rotating direct drive idea to that particular turbine.)

Counter-Rotating Direct Drive Wind TurbineThis turbine produces power in pulses. Each time two blades that are traveling in opposite directions pass each other, their generator components (permanent magnets and coils) pass close to each other as well. So a pulse of power is produced when two blades pass each other. Obviously, it would be better for a turbine to produce power at a smooth constant rate. This is desirable for many reasons. For one thing, producing power in pulses applies a cyclic fatigueing load on the mechanical components, and this is obviously bad news. For another, the electricity is easier to process and manipulate if it is produced at a smooth regular rate. But I am hypothesizing that the design proposed here may be a good one because it allows blades to be supported at both blade tips, even as both tips travel at high velocity! This is a tremendous advantage. But the main advantage of this design is that although it allows blades to travel long distances guided only by slots that are cut into blade guides, it does not require for these long distances to have generator components (magnets and/or coils) distributed along these long portions of the blade guides. Instead, the generator components are compact, and are attached to the ends of the airfoils. You can think of all of the airfoils that rotate (say) clockwise as comprising the generator “stator”, while all of those rotating counter-clockwise comprise the generator rotor. Of course, another disadvantage of this approach is that slip rings would be required to get the power away from the blades and into the electrical system. But there’s another advantage as well – the fact that the generator’s rotor and “stator” rotate with equal and opposite rpm’s effectively doubles the relative speed with which the coils and magnets pass each other.

So before closing, let me address one of the biggest disadvantages of the idea proposed here – that power is produced in pulses. First of all, the fact that generator rotor and “stator” components are counter-rotating means that more pulses per second are produced than you might otherwise expect. (The more pulses the better. If we had enough pulses then they’d all bunch together and we’d have continuous power. As a matter of fact, three phase power is produced in pulses as well, yet these pulses combine to produce power that is perfectly constant. Might we find a way to exploit this three phase effect to make the power output from this machine constant? Don’t know, and too tired to think about it right now, so maybe I’ll revisit this later. But anyway it may not matter. I’m not concerned about the electrical pulsing – we can easily deal with that using power electronics. I’m more concerned about the pulsating mechanical loads, because these will fatique mechanical components and cause them to fail. On the other hand, the good news is that this pulsating load is confinded with a small space that is enclosed by the slots that guide the blades. This is good, because the more confined it is, the more options we have for dealing with the cyclic load. One option being, for example, just beefing up the support structure in that area. This is possible because, again, this area is aerodynamically shielded from the outside wind because it lives inside the slot.) Anyway, as I said, the because the blades are counter-rotating, they pass each other at a relatively high frequency. So maybe we can just design the machine to have many small blades (i.e. many blades, each having a short chord). Now when all these blades counter-rotate, we may end up with so many pulses that the output power looks like DC with a ripple on top. (Remember that adjacent blades don’t necessarily need to be separated by a constant angle. For example, just because there are (say) 6 blades that rotate (say) clockwise doesn’t mean that each adjacent blade must be separated by an angle of 360/6 = 60 degrees.)

Ring Generator Option

If the pulsating loads turn out to be a showstopper, then we can always fall back on the ol’ ring generator approach. In this case, we have the advantage that the rings are counter-rotating, thus doubling the velocity between magnets and coils.

April 28, 2009

High Speed Centrifugally Stable VAWT

(Note – there are some errors in this post that I haven’t had time to fix yet, but I’m sure that if you know mechanical engineering you can easily correct the errors yourself. I think this idea might have potential once the errors are corrected. Note also that the torque tube will probably remain fixed with respect to the stationary tower rather than rotating around it. Also note that the struts each need to be connected by a vertical lattice (near the stationary tower) to keep them separated… that is, to¬†prevent the load that tends to bend the ends of the struts towards each other from being transferred to the rest of the structure, thereby defeating the fundamental purpose of the idea.)

(Okay, here’s a pic with some errors corrected, but with no explanation:

High Mechanical Efficiency Centrifugally Stable Darrieus Turbine


High Speed Centrifugally Stable VAWT, Side View

High Speed Centrifugally Stable VAWT, Aerial View

This is a 3 bladed turbine, but I have drawn only two blades in order to make the illustration easier to understand. And I realize there are a lot of “legitimate” mechanical designs to realize this concept, likely using gears instead of tires and so forth. But I’m not a mechanical engineer, and so I just want to draw something that will give the real designers an idea they can play with.

Because the tower does not rotate, the rotor can be very tall, very slender, and it can spin at high rpm without becoming centrifugally unstable. But can’t the stationary tower can bend just as much as the rotating tower? And if the stationary tower bends, won’t this cause the rotating part of the structure to become centrifugally unstable just as if the tower were rotating? No. To see this, consider what happens when the middle of a rotating tower bows in response to the lifting forces transmitted to the tower from the airfoil by the middle strut. In this case, the middle of the rotating tower bows in the downwind direction, but its rotational axis does not change. Therefore the mass of the rotating tower has been displaced from the rotational axis, and centrifugal force now acts to cause even more bowing, and the rotor has become unstable. But when the middle of the stationary tower bows in the downwind direction, the rotational axis of the middle struts and airfoils moves along with it. And so although the rotor’s axis of rotation is no longer straight, it is at least centrifugally stable.

Another advantage of this design is that the guy wires are not connected to the tower through bearings. This should provide a big reduction in mechanical losses, since the bearings at the top of a traditionally guyed Darrieus bear a very heavy load – the rotor’s overturning moment. Of course, the overturning moment must be supported somewhere by some bearings. This design has bearings inside the rings that the struts attach to. So is there any advantage in this compared to the traditionally guyed Darrieus? I’m not a mechanical engineer, so I don’t know. Maybe there’s no advantage at all, but I’m wondering if the approach here isn’t better because it is easier to influence the bearings at design time. For one thing, you can spread the load over as many bearings as you want, while the traditional design requires two sets of bearings – one at the top of the tower and one at the bottom. For another thing, the guy wires in the traditional design are not only trying to torque the bearings about a horizontal axis, they are also doing this cyclically, from very low torque to very high torque several times a second. Surely this can’t be good. Of course, the present design also places a cyclic load on the bearings – there’s no way to avoid that. But at least it’s a “typical” load in that it doesn’t try to twist the bearings to a new axis. So maybe this is a better approach. It seems to me that mechanical losses will be decreased by eliminating the torquing thing, but again, I don’t really have the background to know if this claim is accurate.

February 24, 2009

Fiberglass Wind Turbine Gearbox

The wind turbines once manufactured by Carter Wind Turbines, Inc. utilized innovative fiberglass technology. The spar for the blade of the Carter wind machine was made of fiberglass. It looked like a giant wooden popsicle stick. It was spun from fiberglass thread. The fiberglass thread was wound around a mold much in the way fishing line is wound up on the reel of a fishing rod, except that shape of the object supporting the strand was oblong instead of cylindrical. The gears for the fiberglass gearbox would be manufactured in a similar way. First, fiberglass thread is wound into a thick disk shape. Next, a metal ring with teeth is mounted on the rim of the fiberglass disk. The woven strand fiberglass technology was originally used to make pipe. A long cylindrical shape was spun from fiberglass thread in a manner similar to that described above. The outer case of the fiberglass gearbox might be cylindrical in shape, and might be spun from glass in the same way. The shaft of the gearbox might also be spun from glass.

Advantages of Fiberglass Gearbox

The fiberglass gearbox may prove lighter and less costly than the traditional metal gearbox. Also, objects spun from fiberglass strand tend to be robust and flexible. If the components of a fiberglass gearbox do not prove to be overly flexible, then the added flexibility may provide damping and increased resistance to damage from mechanical shock.

I had the idea for the fiberglass gearbox in connection with the Scalable Tower for Very Large Wind Turbine. The fiberglass gearbox may prove to be lighter and more robust than the metal gearbox currently used for wind turbines. However, if such a gearbox is feasible, it would not provide much economic benefit when used in a turbine that has a traditional HAWT tower. This is so because a lighter (lower cost) nacelle does not result in a lighter (lower cost) tower. But if the scalable tower proves viable, then perhaps it would be worth looking in to the possibility of making a gearbox from fiberglass.

Create a free website or blog at