Salient White Elephant

May 10, 2009

Geodesic Dome Turbine

Start with a Geodesic Dome:

Geodesic DomeNow Cut a hole in the top, and cover the hole with a shroud that can yaw in order to keep its opening pointing upwind. Also add vents near the lower part of the dome can than be either opened or closed:

Geodesic Dome TurbineThe variation depiced above has air flowing into the hole at the top of the dome and out of the vents below. I’m not sure this is the best arrangement. The alternative would be to have air flowing into the lower vents and out of the hole in the top. In this variation, the shroud over the top hole in the diagram would be yawed (rotated) 180 degrees, and (I’m guessing) the left two vents in the diagram would be open, while the other vents would be closed. I guess one of these ideas is probably aerodynamically superior to the other, but I don’t know which is which. It’s worth noting that the real low pressure should be at the top of the dome, since this is where the wind has been accelerated the most. Seems like it might make sense then to let the wind flow in to the lower vents (where pressure is naturally higher), and out through the hole in the top. I don’t know much about the theory of fluid flow, so I’ll leave the rest to those of you who have the academic background to model and solve a problem like this.

Before ending this post, however, I’d like to point out an aspect of this idea that is particularly intriquing. Since you can have lots and lots of vents, but only one hole in the top of the dome, it stands to reason that it should be easy to provide the dome with many square feet worth of vents, given the area of the hole at the top of the dome. This means that the velocity of wind flowing through the vents may be caused to vary by only a small amount relative to the velocity of the wind outside the dome. For this reason, it would seem that the vast part of the lower part of the dome could be made to be quite comfortable for people, and this means the dome can have alternative uses. For example, the dome could house a giant botanical garden for the public to enjoy. If you really wanted to control the environment for the people inside, two concentric geodesic domes could be placed one on top of another, creating a thin (say) 40 foot wide gap between the two ceilings. The gap could be used for wind flow and the harvesting of its energy, while the part inside the lower (smallest) dome could be used for just about anything – commercial office space, a manufacturing plant, basketball court, … you name it!

Retrofit Option

Depending on how attractive this structure could be made to be, and on its cost effectiveness, we might imagine putting one of these things on top of an existing structure. Rooftop wind turbines are generally frowned upon, but I think this is mostly because of the harshly turbulent conditions within which a rooftop turbine must normally operate. The dome solves this problem in several ways. First, it doesn’t have any sharp turbulence producing edges. Second, its rotors are small and therefore less sensitive to turbulence, and they can be located in a short cylindrical shroud that is equipped with the same kinds of turbulence attenuating apparatus as is found in wind tunnels. And finally, if a small rotor does eventually develop a crack due to turbulence-induced fatique, simply replace it. It’s small, and so the cost of replacing it is no big deal.

I saw a medium sized, three story motel the other day that looked like it could easily accomodate a Geodesic Dome Turbine. If the dome had enough vents to open during a wind storm, it would seem likely that the motel could accomodate the turbine in spite of the fact that the building designers had not accounted for the extra load.

Advertisements

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: